

NewroBusTM Carrying Biologics Across the Blood-Brain Barrier

Forward-Looking Statements

This presentation contains "Forward-Looking Statements" Forward-Looking Statements reflect our current view about future events. When used in this presentation, the words "anticipate," "believe," "estimate," "expect," "future," "intend," "plan," or the negative of these terms and similar expressions, as they relate to us or our management, identify forward-looking statements. Such statements, include, but are not limited to, statements contained in this presentation relating to our business strategy, our future operating results and liquidity and capital resources outlook. Forward-looking statements are based on our current expectations and assumptions regarding our business, the economy and other future conditions. Because forward-looking statements relate to the future, they are subject to inherent uncertainties, risks and changes in circumstances that are difficult to predict. Our actual results may differ materially from those contemplated by the forward-looking statements. They are neither statements of historical fact nor guarantees of assurance of future performance. We caution you therefore against relying on any of these forward-looking statements. Important factors that could cause actual results to differ materially from those in the forward-looking statements include, without limitation, our ability to raise capital to fund continuing operations; our ability to protect our intellectual property rights; the impact of any infringement actions or other litigation brought against us; competition from other providers and products; our ability to develop and commercialize products and services; changes in government regulation; our ability to complete capital raising transactions; and other factors relating to our industry, our operations and results of operations. There is no guarantee that any specific outcome will be achieved. Investment results are speculative and there is a risk of loss, potentially all loss of investments. Actual results may differ significantly from those anticipated, believed, estimated, expected, intended or planned. Factors or events that could cause our actual results to differ may emerge from time to time, and it is not possible for us to predict all of them. We cannot guarantee future results, levels of activity, performance or achievements. Except as required by applicable law, including the securities laws of the United States, we do not intend to update any of the forward-looking statements to conform these statements to actual results.

NN-843: a TNF-α Inhibitor Crossing the Blood-Brain Barrier Using NewroBusTM Technology to Treat Alzheimer's Disease

NN-843 is a novel therapy to treat Alzheimer's by targeting TNF- α induced neuroinflammation with a TNF- α Inhibitor efficiently crossing the Blood-Brain Barrier (BBB) using our NewroBusTM technology

IND filing of NN-843 expected in 4Q2026, with the program supported and validated by STTR Phase 1 & 2 NIH grants for a total of \$3.0 million awarded in May 2023 and July 2025

NN-843 built on NewroBus™, our versatile, patented technology to carry biologics across the BBB via TfR1, and available for licensing to companies with biologics requiring to cross the BBB

Experienced scientific, clinical, regulatory and business team with successful track record in developing, launching and licensing-out novel pharmaceuticals

NN-843 IND expected in 4Q2026 (\$7.8M), followed by Phase 1/1b (\$17.9M) and End-of-Phase-1 meeting in 4Q2028. Non-dilutive NIH grant of \$2.5 million awarded in July 2025.

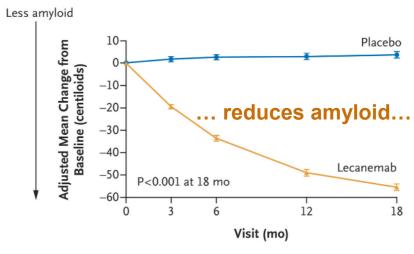
Experienced Scientific, Clinical, and Business Funding Team

- Marco Taglietti, MD, Chief Executive Officer
 - 35+ years of experience with more than 30 different products brought to market
 - President and Chief Executive Officer of Scynexis (Nasdaq:SCYX) from 2015 to 2022
 - President and Chief Medical Officer at Forest Laboratories (Nasdag:FRX) from 2007 until 2014
 - Head of Global Research at Stiefel Laboratories from 2004 to 2007
 - Vice President, Clinical Development, Schering-Plough from 1992 to 2004

Luciano D'Adamio, MD, PhD, Founder and Chief Scientific Officer

- 30+ years of experience with more than \$26 million in NIH grants since 2004
- Distinguished neuroscientist and professor at Rutgers, The State University of New Jersey
- Herbert C. and Jacqueline Krieger Klein Endowed Chair since 2017
- Irene Diamond Professor of Immunology at the Albert Einstein College of Medicine
- Professor of Clear Fame, University of Naples, Federico II
- Alzheimer's Medal and the Zenith Award from the Alzheimer's Association.
- On editorial boards of leading journals and recognized for his groundbreaking work in neurodegenerative diseases and translational neuroscience

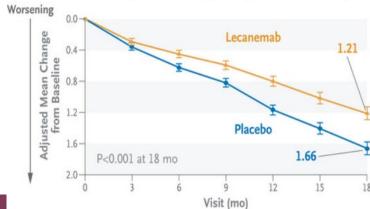
The Problem: Alzheimer's Disease Remains a Major Unmet Need


- >7 million Alzheimer's patients in the U.S.¹
 - A \$14.5 billion market by 2029... a large but unsatisfied market
- Only partial success of anti-amyloid biologics²
 - Strong biological effect with reduction of amyloid...
 - ... but only **temporary** improvements in symptoms
 - Modest slowdown of cognitive decline
- ... and Anti-Tau products have consistently failed, to date

We need to target additional pathogenetic mechanisms!

- 1) 2023 Alzheimer's Disease Facts and Figures, Alzheimers Dement 2023, 19(4) 1598-1695
- 2) https://www.nejm.org/doi/full/10.1056/NEJMoa2212948

Leqembi's biological effect.

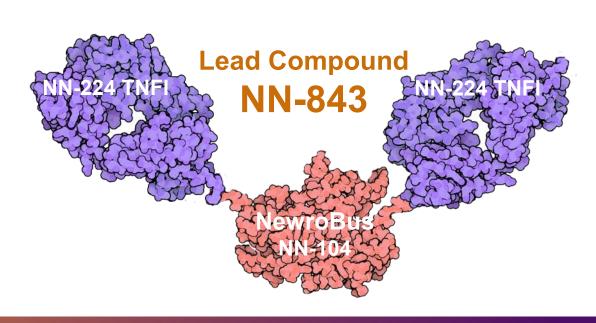


... but with modest clinical effect!

Change in CDR-SB Score (Range 0-18)

Difference in least-squares mean change, -0.45 (95% CI, -0.67 to -0.23)

Solution: TNF-α Inhibitors Crossing the Blood-Brain Barrier


- BRAIN PASS
- Growing evidence that dysregulated TNF- α drives brain inflammation and plays a role in Alzheimer's Disease (AD)
- TNF-α inhibitors (TNFI) could transform the treatment of Alzheimer's as TNFI Remicade and Humira did with Crohn's Disease or Rheumatoid Arthritis
 - But TNFI don't cross Blood-Brain Barrier (BBB)!

- NanoNewron's Solution: NN-843 and NewroBusTM
 - NN-843: a potent TNF- α inhibitor crossing the BBB using NewroBus
 - NewroBus: single-chain nanobody designed to transport biologics across the BBB

A Potent TNF-α Inhibitor Engineered to Efficiently Cross the BBB

- Lead compound NN-843 for the treatment of Alzheimer's Disease
 - Two molecules of proprietary TNF-α inhibitor (TNFI) NN-224 linked to NewroBus NN-104
 - NN-843 crosses the BBB via TfR1 in rats after S.C. administration
 - Biological activity tested in rats with humanized TfR1, Tf, and TNF- α
 - High inhibition activity against TNF-α
 - Excellent CSF/Serum ratio (~1:2)
 - Broad distribution in the brain tissue
 - High specificity and affinity to human TfR1
 - NN-843 does not cause hematotoxicity
 - Low immunogenicity potential

Why Targeting Inflammatory Cytokine TNF- α for Alzheimer's?

ullet Decreasing the excessive activity of TNF- α reduces the pathophysiologic

changes of Alzheimer's Disease (AD)

	12	ta	n	h		m	2	n	C
$\boldsymbol{ u}$	a	LИ	 	- 1 1	ч		а		J

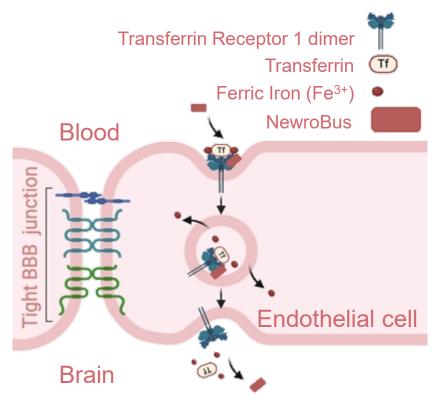
- Reduced risk of AD in patients treated with TNFI for other conditions¹
- Cognitive improvements after peri-spinal administration of TNF- α inhibitors²
 - Open-label, small (N=15) study showed 5-point improvement in ADAS-Cog score at 6 months
- Trend for elevated TNF- α levels in blood and CNS in Alzheimer's patients³

Data in Animal Models

- TNF-α inhibitor XPro1595 decreases beta-amyloid plaque load in 5xFAD mice⁴
- TNF-α inhibition in a mouse AD model prevents pre-plaque amyloid-associated neuropathology⁵
- TNF-α increases excitatory transmission preceding Alzheimer's pathology in young Trem2R47H rats⁶
- 1) Torres-Acosta N. et al (2020) Therapeutic Potential of TNF-α Inhibition for Alzheimer's Disease Prevention. Journal of Alzheimer's Disease, 78(2), 619-626
- 2) Tobinick E et al (2006) TNF-alpha Modulation for Treatment of Alzheimer's Disease: A 6-Month Pilot Study. MedGenMed, 8(2), 25
- 3) Plantone D. et al (2023) The Role of TNF-α in Alzheimer's Disease: A Narrative. *Cells*, 26;13(1), 54
- 4) MacPherson KM et al (2017) Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice. Neurobiol Dis, 102, 81-95
- 5) McAlpine FE et al (2009) Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol Dis 34(1), 163-177
- 6) Ren S et al (2021) TNF-α-mediated reduction in inhibitory neurotransmission precedes sporadic Alzheimer's disease pathology in young Trem2R47H rats, J Biol Chem, 296

compared to the general population							
TNF Inhibitor	Odd Ratio						
etanercept	0.3						
etanercept	0.36						
etanercept	0.34						
adalimumab	0.65						
adalimumab	0.28						
infliximab	0.73						
infliximab	0.64						

Odd Ratio¹ of developing AD


What is the NewroBus[™] Technology?

NewroBus is a versatile brain-carrier technology platform exploting TfR1

- The blood-brain barrier (BBB) keeps out from the brain large molecules, e.g. biologics
- NewroBus transports large molecules into the brain by exploiting the natural mechanism of **Transferrin Receptor 1** (**TfR1**) to carry Transferrin (Tf) across the BBB

NewroBus: a Best-in-Class TfR1 Brain Carrier

- Four different NewroBus molecules are available
 - Selected from a large pool of >450 humanized nanoantibodies
 - No interference with Tf binding and uptake
- High humanness with low immunogenicity potential
- High specificity: binds exclusively to human TfR1, not rodent TfR1
- <u>High BBB permeability</u> (**High CSF/Serum ratio >0.7**) tested in rat models with the human TfR1 gene
- <u>High tolerability</u>, with **low risk for anemia** in humans, as tested in rats with humanized TfR1/Tf complex

Business Plan Based on Two Strategies

- 1) Continue aggressive development of NN-843 for Alzheimer's
 - Novel approach targeting TNF- α inflammation with high brain penetration, TNF- α inhibition and excellent tolerability
 - Animal models in humanized TfR1 rats available to establish preclinical proof of concept
 - Early Alzheimer's disease as initial target population, an estimated market of 3 to 5 billion dollars
 - Expand use of NN-843 (or a follow-up compound) into additional CNS disorders
 - Parkinson's, Traumatic Brain Injury, Multiple Sclerosis, ALS
 - Multiple short-(18-24 months), medium- and long-term inflection points
- 2) License NewroBusTM Technology to other companies for non-dilutive funds
 - Four different NewroBus molecules currently available for licensing
 - Potential life-cycle management of commercial products
 - Enhancing brain penetration of other novel biologics
 - Potential for other therapeutic areas and combination therapy
 - Additional source of non-dilutive funding in the short term

Our Achievements to Date by the Numbers

- Clinical candidate selection
 - 940 nanobodies cloned, produced, and tested for antigen binding
 - 85 anti-TNF- α nanobodies tested for TNF- α inhibitory activity
 - 106 anti-TfR1 nanobodies tested for binding to human TfR1
- Scale-up of non-GMP/GMP manufacturing to meet IND and Phase 1 supply needs
- Rat models development
 - 3 different rat models generated with humanized TfR1, TF, and TNF- α
 - 40 germline and humanized TfR1b nanobodies tested in vivo for BBB permeability.
 - 32 heterotrimers and heterodimers evaluated for TNF α inhibitory activity and BBB permeability
- Additional studies
 - 2 tox studies in humanized rats to assess hematological side effects
 - ex-vivo human dendritic cells and T cells immunogenicity assessment of nanobodies
 - Crystallography studies
- Total costs for work performed to date \$5,700K
 - Dr. D'Adamio's NIH Grants at Rutgers: \$5,200K
 - NanoNewron's STTR Phase 1 NIH Grant (2023): \$500K

Next Key Milestones and Costs for NN-843 in Alzheimer's IND Filing in 4Q2026 and End-of-Phase-1 Meeting in 4Q2028

Activities		2025		2026				Costs	2027				2028				Costs	
		Q4 O <i>N D</i>	Q1 J F M	Q2 AM J	Q3 J A S	Q4 O <i>ND</i>	1	to IND	Q1 J F M	Q2 1 A <i>M J</i>	Q3 J A S	Q4 O <i>ND</i>	Q1 J F M	Q2 A <i>M J</i>	Q3 J A S	Q4 O <i>N D</i>	IND→FOP1	
1. CMC/Manufacturing Scale-Up							\$	1,750K									\$	1,350K
Qualification, Formulation, Stability	Assays Formul			ation Stability		\$	1,150K	Stability			/ Studies				\$	600K		
Non-GMP and GMP Production	nGMP G		SMP				\$	600K				GMP					\$	750K
2. Preclinical Mechanistic Studies							\$	1,500K										
Cognition and behavior studies			in vivo	Mod	els		\$	950K										
In vitro Pathology/Organoid Studies		in vitro Models				\$	550K											
3. IND Program and Safety Studies							\$	2,600K									\$	1,500K
Toxicology program*		F	PK IND Tox		\$	2,600K	Long-Term Tox Studies				\$	1,500K						
4. Regulatory/Operations							\$	1,500K									\$	1,800K
IND and EOP1 Activities		Pre-	-IND	IND	Prep	IND	\$	600K					EOP1	Prepa	ration	EOP1	\$	400K
Operations/Aministrative Costs		Operations/Administration				n	\$	900K		(Operat	ions/A	Administration				\$	1,400K
5. Clinical Program							\$	450K									\$	13,250K
Clinical Phase 1 Preparation				F	hase :	l Prep	\$	450K									\$	250K
Phase 1 SAD/MAD Study										SAD	M	AD					\$	5,500K
Extended Treatment Phase 1b													Ph	ase 1	כ		\$	7,500K
Total Cost by Phase				to	IND F	iling:	\$	7,800K		Fron	1ND	to En	d-of-P	hase-	-1 Me	eting:	\$	17,900K

^{*} Assuming no primate studies

Relevant Competition in Alzheimer's Disease

Company (Partner)	Therapy Target	BBB Carrier	Status	Notes - Out Licensing Deals
Inmune Bio	TNF-α	none	Phase 2	Phase 2 results supportive of TNF-α inhibition as a therapeutic target
Denali (Takeda)	TREM2	TfR1	Terminated due to toxicity	Licensed at pre-IND stage for \$150M upfront and undisclosed milestones and royalties
BioArctic (BMS)	β-amyloid	TfR1	Pre-IND	Licensed for \$100M upfront, \$1.2B milestones and double digit royalties
Roche	β-amyloid	TfR1	Phase 2	Trontinemab in Phase 2 showed clearance of β-amyloid on PET imaging
ABL Bio (GSK)	Undisclosed	IGF1R	Pre-IND	Licensed for \$100M upfront, \$2.5B milestones and royalties

Effective and safe brain carriers, like NewroBus, can command highly valued transactions at an early stage of development

NN-843: a TNF-α Inhibitor Crossing the Blood-Brain Barrier Using NewroBusTM Technology to Treat Alzheimer's Disease

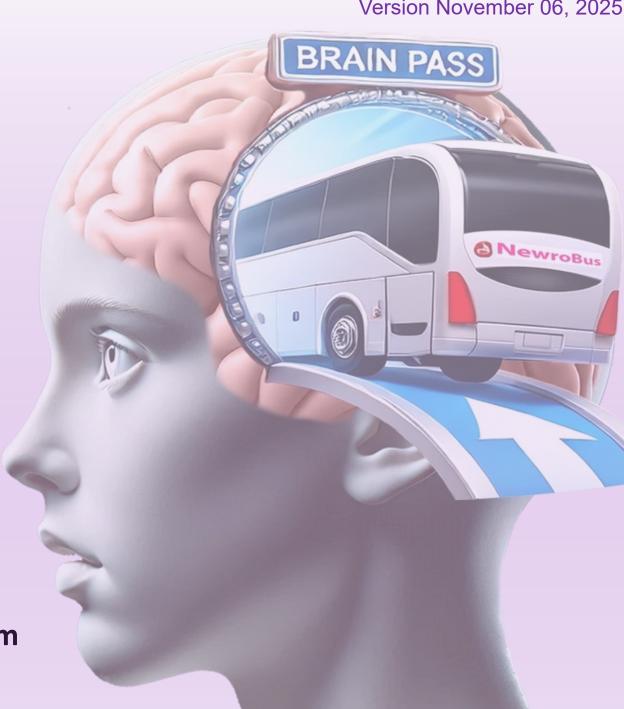
NN-843 is a novel therapy to treat Alzheimer's by targeting TNF- α induced neuroinflammation with a TNF- α Inhibitor efficiently crossing the Blood-Brain Barrier (BBB) using our NewroBusTM technology

IND filing of NN-843 expected in 4Q2026, with the program supported and validated by STTR Phase 1 & 2 NIH grants for a total of \$3.0 million awarded in May 2023 and July 2025

NN-843 built on NewroBus™, our versatile, patented technology to carry biologics across the BBB via TfR1, and available for licensing to companies with biologics requiring to cross the BBB

Experienced scientific, clinical, regulatory and business team with successful track record in developing, launching and licensing-out novel pharmaceuticals

NN-843 IND expected in 4Q2026 (\$7.8M), followed by Phase 1/1b (\$17.9M) and End-of-Phase-1 meeting in 4Q2028. Non-dilutive NIH grant of \$2.5 million awarded in July 2025.



Thank you!

For inquiries please contact:

Bahar Aksoy at bahar.aksoy@nanonewron.com Townsend Hall T217, 1000 Morris Ave, Union, NJ 07083

